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Abstract
We consider the problem of the existence of additional analytical first integrals
in some Hamiltonian systems, which are close to integrable, namely, the motion
of a rigid body is close to a dynamically symmetric one.

The problem of motion of a rigid body in an ideal liquid (the Kirchhoff
problem) and the similar problem of rotation of a rigid body with a fixed point
in an axisymmetric force field with a quadratic potential are investigated. The
existence of hyperbolic periodic and asymptotic trajectories is shown. It is
proved that perturbed trajectories are crossed but do not coincide. This is the
reason for the absence of an additional analytical first integral in the perturbed
problem.

The problem of perturbed motion of a dynamically symmetric rigid body
along an absolutely smooth horizontal plane is considered. Non-integrability
of this problem is proved by the method of splitting asymptotic surfaces.

PACS numbers: 4520J, 0230, 9510C

1. The Kirchhoff problem

The motion of a rigid body in an ideal fluid is described by the Kirchhoff equations in
R6 = R3{M} × R3{e}:

Ṁ = M × ∂H

∂M
+ e × ∂H

∂e
ė = e × ∂H

∂M

where H = 1
2 〈AM,M〉 + 〈BM, e〉 + 1

2 〈Ce, e〉 is a positive-definite quadratic form, M is the
kinetic moment and e is the impulsive force (see [1]). Matrix A can always be brought into
diagonal form by means of an orthogonal transformation: A = diag(a1, a2, a3), matrices B

and C are symmetrical. If the body has three mutually perpendicular planes of symmetry, then
B = 0, C = diag(c11, c22, c33).

The Kirchhoff equations always have three first integrals: F2 = 〈M, e〉, F3 = 〈e, c〉.
If there exists an additional integral that is independent of the three classical ones, then the
Kirchhoff equations are completely integrable.
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As noted by Steklov in [2], in the case B = 0 the Kirchhoff equations are equivalent to
the Euler–Poisson equations of motion of a rigid body with a fixed point in an axisymmetric
force field with quadratic potential −U(γ ), where γ is the unit vector of the axis of symmetry
of the force field. The Hamiltonian is

H = 1
2 〈I−1M,M〉 − U(γ ) = 1

2 〈Iω, ω〉 − U(γ ).

The angular velocity vector is ω = ∂H/∂M = AM = I−1M , where 1/ai = Ii , i = 1, 2, 3 are
the principal central moments of inertia of some rigid body. In what follows, we will consider
the case B = 0, and therefore we will not distinguish between the problem of rotation of a
rigid body with a fixed point in an axisymmetric force field and the problem of motion of a
rigid body in an ideal fluid. The equations of motion of a rigid body in a quadratic force field
with potential

−U(γ1, γ2, γ3) = 1
2 (c11γ

2
1 + c22γ

2
2 + c33γ

2
3 ) + c12γ1γ2 + c13γ1γ3 + c23γ2γ3

can be written in the form of the Euler–Poisson equations:

I ω̇ + ω × Iω = γ × U ′
γ γ̇ + ω × γ = 0.

If c12 = c13 = c23 = 0 and

(c22 − c33)/a1 + (c33 − c11)/a2 + (c11 − c22)/a3 = 0

then these equations have a first integral (the case of Clebsch integrability). It was shown in
[3] that if a1 	= a2 	= a3, then no new integrable cases exist, except for the Clebsch case. If
a1 = a2 	= a3 and c11 = c22, then there exists a new integral M3 = ω3/a3 = constant. This is
the case of Kirchhoff integrability. From the standpoint of the problem of rotation of a rigid
body with a fixed point, it is natural to also refer to this case as the Lagrange case.

Theorem. (See [4]1). Assume that a1 = a2 	= a3 and that the elements of the symmetrical
matrix C = ‖cij‖ are as follows: c11 = c22 + ε, c22 	= c33, εc12, εc13, εc23. Then for small
ε 	= 0 the Kirchhoff equations do not have a new integral that is analytic in R6.

Remark. If a1 = a2 = a3, then the Kirchhoff equations are completely integrable.

The proof of the theorem is based on the Poincaré method of splitting the asymptotic
surfaces [5, 6].

(a) Using the integral F3 = 〈γ, γ 〉, to within an additive constant we can represent the force
functions in the following form:

U = 1
2 (c33 − c22)γ

2
3 + 1

2εγ
2
1 + ε(c12γ1γ2 + c13γ1γ3 + c23γ2γ3).

Assume that H = H0 + εH1 is the Hamiltonian of the problem of perturbed motion of a
Lagrange top in a quadratic force field:

H0 = 1
2I1(p

2 + q2) + 1
2I

2
3 r

2 + 1
2 (c33 − c22)γ

2
3

H1 = 1
2γ

2
1 + c12γ1γ2 + c13γ1γ3 + c23γ2γ3.

Using the kinematic Euler equation and the area integral with constant equal to zero, we
arrive at the unperturbed problem with one degree of freedom:

H0 = 1
2I1θ

2 + Ũ Ũ = 1
2 cos2 θ

(
I 2

3 r
2
0

I1 sin2 θ
+ c33 − c22

)
.

1 A similar theorem was formulated in [4] for the particular case in which ‖cij‖ is a diagonal matrix.
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(b) In order to obtain asymptotic solutions, let us determine the critical points at which Ũ has
a maximum, i.e. unstable equilibrium points. The point θ = π/2 is always critical; the
local maximum condition for Ũ at point θ = π/2 is

c33 − c22 < −I 2
3 r

2
0

I1
= −α2 (1)

where α is a constant that depends on the initial conditions. For c33 < c22 by choosing
r0 we can always achieve satisfaction of condition (1), i.e. an asymptotic trajectory runs
through the point θ = π/2 on the phase plane in this case. If c33 > c22, then we replace
γ by iγ . This change does not affect the real property of the Kirchhoff equations, and
corresponds to a simple change of sign of all the coefficients cij . After this change
has been made, the condition c33 < c22 will be satisfied. If there exists an integral of
the Kirchhoff equations F4(ω, γ ), then the functions F ′

4 and F ′′
4 , determined from the

equation F4(ω, iγ ) = F ′
4 + iF ′′

4 , are integrals of a modified Kirchhoff system; at least one
of them is independent with three classical integrals F1, F2, F3. Thus, we can assume that
the condition c33 < c22 is always met and that asymptotic solutions run through the point
θ = π/2.

(c) In the homoclinic case, the splitting condition for the separatrices implies that the perturbed
problem is not integrable [6, p 44]. The splitting condition is∫ ∞

−∞
{F0, H1}(z0(t), t) 	≡ 0 (2)

where z0(t) is the unperturbed asymptotic solution [6, p 42]). As the first integral of the
unperturbed system with HamiltonianH0 we take the functionF0 = 1

2I1(p
2 +q2)+ 1

2 (c33−
c22)γ

2
3 , chosen from the convergence condition for integral (2). To calculate {F0, H1} we

employ the expressions

p = p2γ3 − p3γ2

I1
q = p3γ1 − p1γ3

I2
r = p1γ2 − p2γ1

I3

wherep1, p2, p3 are the conjugate canonical momenta to γ1, γ2, γ3 [7]. Then, for example,{
F0,

γ 2
1

2

}
= qγ1γ3 = −r0 cos2 θ sin ϕ cosϕ

(
1 +

I3

I1 sin2 θ

)
.

On the asymptotic trajectory

ϕ = r0t + arctan
e2(aβt+k) + 1 − 2a2

2a
√

1 − a2

where a2 = 1 − I 2
3 r

2
0/I1(c2 − c3), β2 = (c2 − c3)/I1, k is the initial phase. Note that the

generality of the proof is not reduced by choosing the area constant in section 1 to be equal
to zero, since it can be shown that the separatrices split under this condition, then the fact
of continuity implies that they also split for sufficiently small values of the area constant.
If no additional analytic integral exists in some region corresponding to a small interval
of change of the area constant, then it does not exist in the entire region of variation of the
parameters.

(d) Calculating (2) by means of residues, we obtain the non-splitting condition for the
separatrices for I3 = 0:

β

eπr0/2 − e−πr0/2
sin 2r0k − 2βc12

eπr0/2 − e−πr0/2
cos 2r0k + 4c13 sin r0k − 4c23 cos r0k ≡ 0.
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A series of equalities follow from this: c12 = c13 = c23 = 0, β = 0. By the condition of
the theorem, c22 	= c33, i.e. β 	= 0. Consequently, expression (2) is not identically zero
and this proved that the perturbed problem is non-integrable for almost all I3 	= 0:

− 1
2 r0

∫ ∞

−∞

(
cos2 θ sin 2ϕ +

I3

I1

cos2 θ

sin2 θ
sin 2ϕ

)
dt

−r0c12

∫ ∞

−∞

(
cos2 θ cos 2ϕ +

I3

I1

cos2 θ

sin2 θ
cos 2ϕ

)
dt

+c13

∫ ∞

−∞

[
cos θ

sin θ
(1 − 2 cos2 θ)

√
β2 − I 2

3 r
2
0

I 2
1

1 − e1(aβt+k)

1 + e2(aβt+k)
sin ϕ

−I3

I1
r0

cos θ

sin θ
cos2 θ cosϕ

]
dt + c23

∫ ∞

−∞

[
cos θ

sin θ
(1 − 2 cos2 θ)

√
β2 − I 2

3 r
2
0

I 2
1

×1 − e2(aβt+k)

1 + e2(aβt+k)
cosϕ +

I3

I1
r0

cos θ

sin θ
cos2 θ sin ϕ

]
dt 	≡ 0.

Upon the coefficients for the sines and cosines, for example, in the neighbourhood of
r0 = 0, we can readily show that they are not identically zero, and thus the theorem is
proved in the general case.

2. A symmetric rigid body on a horizontal plane

Let a moving body of revolution be in contact with a fixed surface and P be the point of
contact. In contrast to [8], we consider the case when the ellipsoid of inertia for the centre of
mass G is an ellipsoid of revolution around the axis Gz. The distance from G to the plane is
equal to |GQ| = ζ = f (θ), where θ is the angle between the z-axis and the vector GQ. Let
A = B 	= C be the principal central moments of inertia of the body.

Let us formulate the conditions of existence of asymptotic solutions for the unperturbed
system with the Hamiltonian (see [9])

H0 = 1
2Mζ̇ 2 + 1

2A(p2 + q2) + 1
2Cr2 + Mgζ.

Using the kinematic Euler equations

p = ψ̇ sin θ sin ϕ + θ̇ cosϕ q = ψ̇ sin θ cosϕ − θ̇ sin ϕ

and the integrals of motion

1
2Mζ̇ 2 + 1

2A(p2 + q2) + 1
2Cr2 + Mgζ = h = constant

Ap sin θ sin ϕ + Aq sin θ cosϕ + Cr cos θ = K = constant

r = r0 = constant

we obtain the equalities

[1 + cf ′2(θ)]θ̇2 + ψ̇2 sin2 θ = α − af (θ) (3)

ψ̇ sin2 θ = β − br0 cos θ ϕ̇ = r0 − ψ̇ cos θ (4)

where α = 1
2 (2h − Cr2

0 ), a = 2Mg/A, c = M/A, β = K/A and b = C/A. The equation

θ̇2[1 + cf ′2(θ)] sin2 θ = [α − af (θ)] sin2 θ − (β − br0 cos θ)2 (5)
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follows from (3) and (4). For convenience, the following change is used: θ = π/2 + x and
f (θ) = g(x). The initial conditions β = 0 and α = ag(0) correspond to the unperturbed
periodic motion θ = π/2, θ̇ = 0, ψ̇ = 0, ϕ̇ = r0. Using these initial conditions, from (5) we
obtain

ẋ = F(x) = a[g(0) − g(x)]

1 + cg′2(x)
− b2r2

0 sin2 x

[1 + cg′2(x)] cos2 x
− π

2
< x <

π

2
.

If F ′′(0) > 0, then the asymptotic trajectory passes through the point x = 0 on the phase
plane. If g(x) is an even function, then in a neighbourhood of the point x = 0 we have the
expansion

g(x) = g(0) + ξx2 + o(x2)

where ξ = g′′(0)/2. Hence, the condition F ′′(0) > 0 may be replaced by

ξ < −b2r2
0

a
.

Let us consider the perturbed problem (when the centre of mass is slightly displaced
from the axis of symmetry along the x-axis) with the Hamiltonian H = H0 + εH1, where
H1 = Mgl sin θ sin ϕ.

Let f (θ) = l sin θ (g(x) = l cos x). This choice of f corresponds to the case when a disc
of radius l slides along a horizontal plane. Then,

ẋ2 = al(1 − cos x)

1 + cl2 sin2 x
− b2r2

0 sin2 x

(1 + cl2 sin2 x)2 cos2 x
.

In order to simplify our calculations, we assume that c → 0 and b → 0 (i.e. C → 0,
A → 1 and M/A → 0). It follows from the analyticity that the result given below is valid for
almost all values of the moment of inertia.

Now the equation for the asymptotic surface takes the form

ẋ2 = al(1 − cos x).

Following the method of splitting of asymptotic surfaces (see [6]), we calculate the Poisson
bracket of the functions F0 and H1:

{F0, H1} = Mglẋ sin x sin ϕ.

Here F0 = H0 − Cr2
0/2 is the first integral of the unperturbed system. Using the residues, we

obtain∫ ∞

−∞
{F0, H1}

∣∣
ac

dt = 16π

exp
(
πr0/

√
2al

)
− exp

(
−πr0/

√
2al

)
×

[
r0√
2al

sin r0k −
(

3 +
r2

0

2al

)
cos r0k

]
where k is an arbitrary constant. This integral is not equal to zero identically. Hence, we proved
that the asymptotic surfaces are split and that non-integrability of the perturbed problem takes
place in the homoclinic case being considered (see [9]).
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